

HM-003-016303

Seat No.

M. Sc. (Sem. III) (CBCS) Examination

May / June - 2017

Mathematics: Paper - 3003 (Number Theory - 1) (New Course)

Faculty Code : 002

Subject Code: 016303	
Time : 2	$\frac{1}{2}$ Hours] [Total Marks : 70
Instructi	ions: (1) There are 5 questions in this paper. (2) All questions are compulsory. (3) Each question carries 14 marks.
1 Fill (i)	in the blanks: (Each question carries 2 Marks) If p is a prime number and n is a positive integer then the number of positive integers relatively prime to p^n is
(ii)	If p and q are distinct primes then g.c.d. of p^m and q^n is
(iii)	If $p = 79$ then $x^2 + 1 \equiv 0 \pmod{p}$ has solutions.
(iv)	If p is a prime number and n is a positive integer then the number of positive divisors of $p^n = \underline{\hspace{1cm}}$.
(v)	If $n=100\times99$ then $\emptyset(n) = $
(vi)	If p is a prime number and p does not divide a then $a^p \equiv \underline{\hspace{1cm}} (modp).$
(vii)	If m divides ab then $\frac{m}{(a, m)}$ divides

- $\mathbf{2}$ Attempt any **two**:
 - Prove that there are infinitely many prime integers. (i)
 - (ii) Write the statement of division algorithm and prove it. 7
 - (iii) Suppose (a,m)=1 then prove that $a^{\phi(m)} \equiv 1 \pmod{m}$ 7

- **3** Attempt all the questions:
 - (i) Write the statement of Chinese remainder theorem and prove it.
 - (ii) Find the smallest positive integer x such that the remainder is 3 when it is divided by 5, the remainder is 5 when it is divided by 7 and the remainder is 7 when it is divided by 11.
 - (iii) If $n \neq 0, a, x, y$ are integers then prove that $ax \equiv ay \pmod{m} \text{ if and only if } x \equiv y \pmod{\frac{n}{(a,n)}}$ OR
- **3** Attempt all the questions :
 - (i) Suppose f(x) is a polynomial with integer coefficients, $f(x) = 0 \pmod{p}$ has degree $f(x) = 0 \pmod{p}$ has at most $f(x) = 0 \pmod{p}$ has at most $f(x) = 0 \pmod{p}$ any complete residue system $f(x) = 0 \pmod{p}$.
 - (ii) First find the solutions of $f(x) \equiv 0 \pmod{2}$, $f(x) \equiv 0 \pmod{5}$, $f(x) \equiv 0 \pmod{7}$ and use them to find all solutions of $f(x) \equiv 0 \pmod{70}$. Here $f(x) = x^2 1$.
- 4 Attempt any two:
 - (i) Determine which of the following have primitive roots 7 and if an integer has a primitive root then find at least two primitive roots: 5, 25, 106 and 35.
 - (ii) Suppose n is an odd positive integer and a is an odd integer. Prove that $x^n \equiv a \pmod{2^j}$; (j > 3) has a unique solution.
 - (iii) Prove that $\sum_{d/n} \emptyset(d) = n$, for any positive integer n. 7
- 5 Do as directed: (Each carries 2 marks)
 - (i) Write the definition of Mobius function.
 - (ii) Find the value of $\emptyset(25)$ using Mobius inversion formula.

- (iii) Find the highest power of 79 which divides 47321!
- (iv) Find the number of positive divisors of 180.
- (v) Find the values of $\omega(n)$ for n = 23, 77, 101, 109.
- (vi) Give an example of a multiplicative function which is not totally multiplicative.
- (vii) Find $\emptyset(n)$ for n = 250, 303 and 196.